

Performance Evaluation of a 100% Recycled Asphalt Pavement Mixture using a Polymer Binder: A Pilot Study

Elie Y. Hajj, Murugaiyah Piratheepan, & Peter E. Sebaaly

Pavement Engineering & Science Program University of Nevada, Reno

10th International Conference on the Bearing Capacity of Roads, Railways & Airfields Athens, Greece – June 28-30, 2017

Making a world of difference.sm

Introduction – Recycled Asphalt Pavement (RAP)

- Obtained from
 - Reconstruction / utility cuts
 - Millings for resurfacing
 - Plant reject
- Used in
 - HMA & WMA productions (up to ${\sim}50\%)$
 - US (2014), > 70 million tons of RAP used in new pavements
 - Hot or cold in-place recycling (100%)
 - Emulsion
 - Typically requires a surface treatment or an AC overlay

Making a world of difference.sm

Introduction

Polymeric binder

- G5® TechniSoil Ind. <u>http://www.technisoilind.com/technisoil-g5.html</u>
- A polymer chemistry enabling 100% CIR of AC surface layer.
- Liquid at room temperature

G5-Stabilized RAP mixture

- Mixed & compacted at room temperature
- Cures faster than emulsion
- Paved surface is 30 40°F cooler than the asphalt surface

G5 Recycling Process Flow

Milling

- Cold milling of pavement surface
- Additives injected at milling head
- Grindings ejected to crusher

Crushing + Screening

- Horizontal impact crusher
- Oversize material is screened
- Control to achieve desired gradation based on mix design

Mixing

- G5 binder is injected into continuous pugmill mixer
- Mixer ejects combined RAP + G5 into a windrow

Paving + Compaction

- Pickup machine delivers mixed RAP + G5 into paver
- Paver distributes mixture on the road surface
- Rollers compact material

Crushing, Screening, Mixing

Rolling

Making a world of difference.sm

Pavement Recycling System

Crusher & Mixer

G5® Tank

Pavement Grinder (Mill)

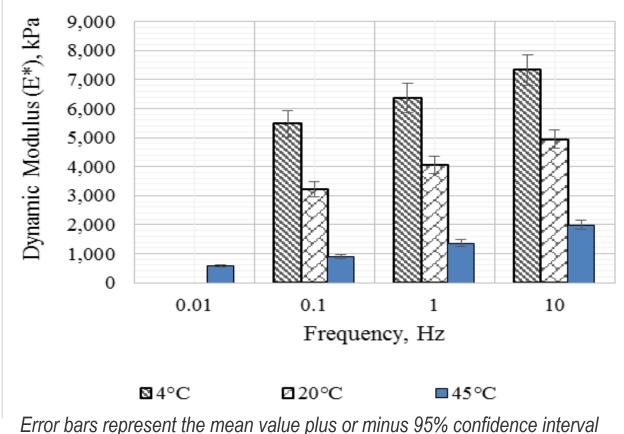
Objective

- Evaluation of G5 for use with 100% RAP
- Conduct a laboratory evaluation
 - Measure engineering and performance properties
 - Dynamic modulus, rutting resistance, fatigue cracking resistance, thermal cracking resistance.
- Conduct a simple ME analysis
 - Estimate fatigue life of a typical pavement structure

Sample Preparation

100% passing 9.5 mm sieve crushed RAP (4.1%TWM RAP binder) Mixed with 9.5% (by dry weight of RAP) of $G5^{\ensuremath{\mathbb{R}}}$

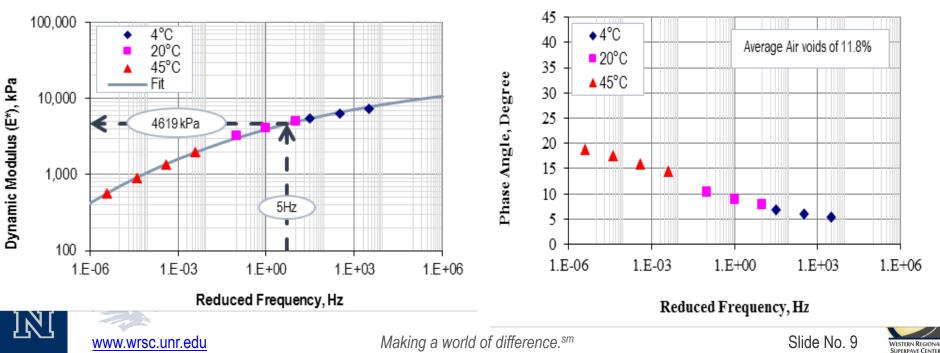
www.wrsc.unr.edu



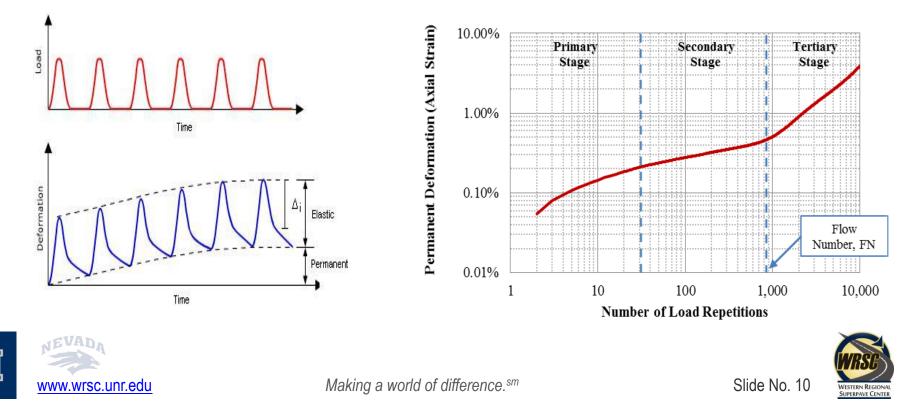
Making a world of difference.sm

G5[®]-Stabilized RAP Mixture Dynamic Modulus, E* (AASHTO TP79)

• 100mm diameter by 150mm height cored samples (12±1%)



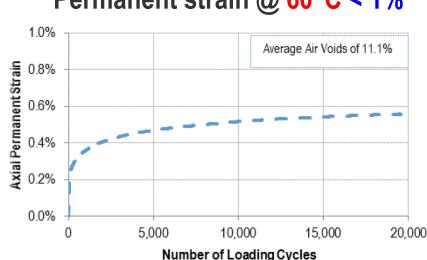
Making a world of difference.sm


G5[®]-Stabilized RAP Mixture E* Master Curve (AASHTO PP61) at 20°C

- G5[®]-stabilized RAP mixture (100% RAP)
 - Viscoelastic behavior.
 - Stable (stiffness similar to that of a typical DG asphalt mixtures).
 - Phase angle values (5 to 20 degrees) indicate high flexibility at low & high temperatures.

G5[®]-Stabilized RAP Mixture Resistance to Rutting (AASHTO TP79)

- 100mm diameter x 150mm height cored samples (12±1%)
- Repeated pulse load of 0.1sec & rest period of 0.9sec
- Deviator stress = 600 kPa; Confinement = 0 kPa
- Test temperature = 60°C



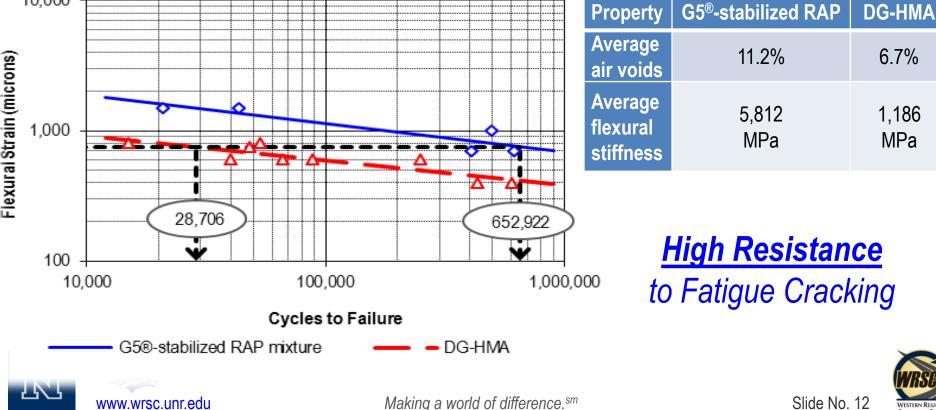
G5[®]-Stabilized RAP Mixture Resistance to Rutting (AASHTO TP79)

- G5[®]-stabilized RAP mixture (100% RAP) exhibited a superior & excellent resistance to rutting.
- Can successfully withstand the high & heavy traffic even in hot climates.

www.wrsc.unr.edu

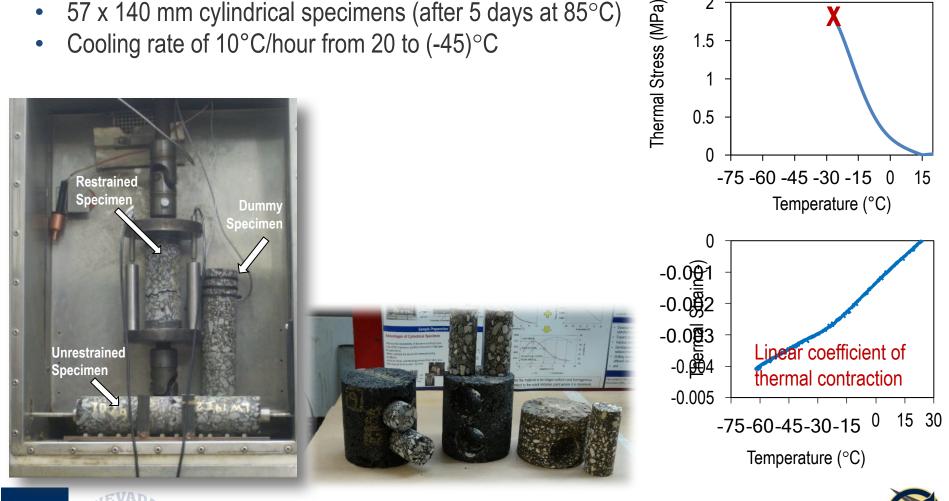
Permanent strain @ 60°C < 1%

AASHTO TP 79 – FN Requirements for Hot-Mix Asphalt (HMA)					Results
Traffic Level (Million ESALs)	< 3	3 to < 10	10 to < 30	≥ 30	100% RAP + G5
<u>Minimum</u> Flow Number (Cycles) ¹	Testing Not Needed	53	190	740	<u>No Flow after</u> 20,000 Cycles


G5[®]-Stabilized RAP Mixture Resistance to Fatigue Cracking (AASHTO T321)

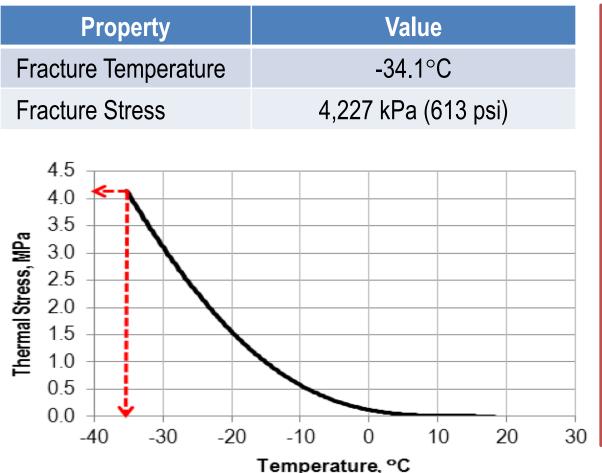
- Uncut beams long-term aged (5 days at 85°C)
- Constant strain mode of testing; 10 Hz
- Test temperature = 21.1°C

www.wrsc.unr.edu


10,000

G5[®]-Stabilized RAP Mixture Resistance to Thermal Cracking (Draft Standard)

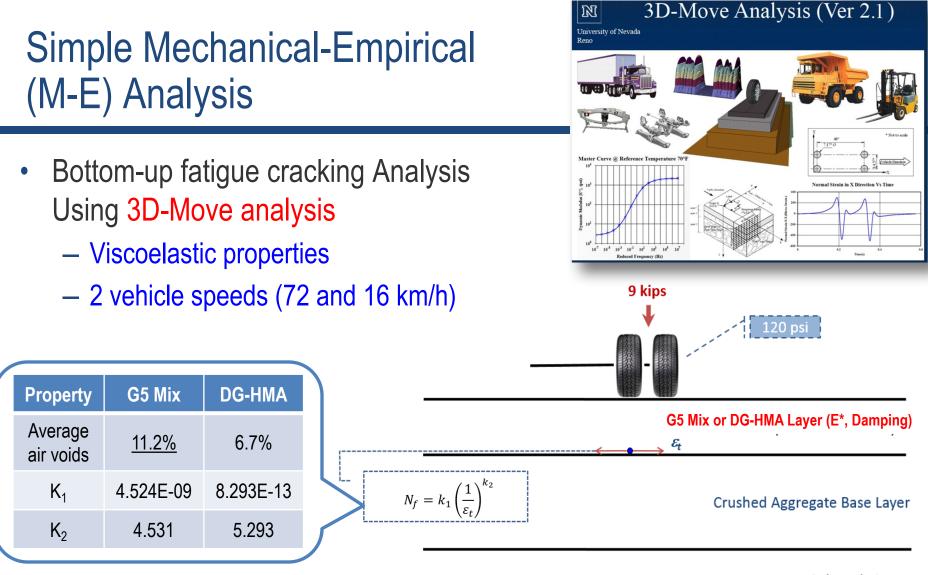
- 57 x 140 mm cylindrical specimens (after 5 days at 85°C)
- Cooling rate of 10°C/hour from 20 to (-45)°C



Making a world of difference.sm

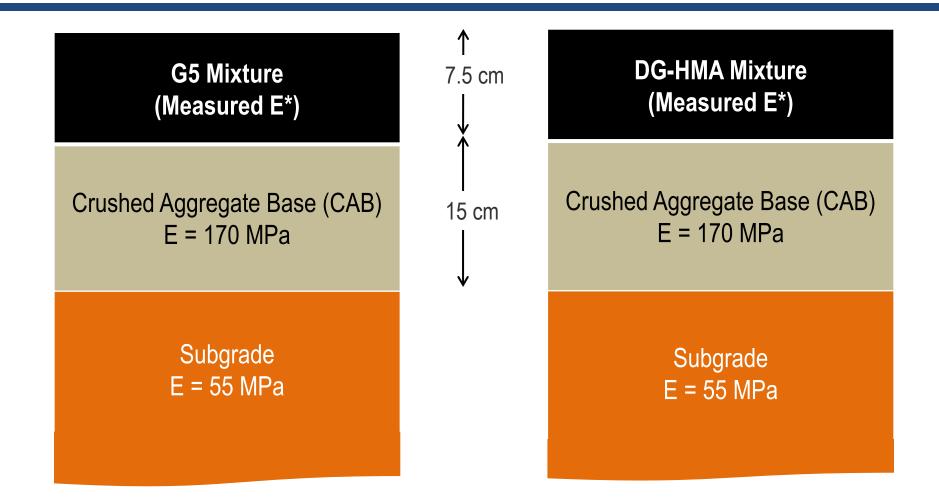
ESTERN REGION SUPERPAVE CENTER

1.5


G5[®]-Stabilized RAP Mixture Resistance to Thermal Cracking (Draft Standard)

G5[®]-stabilized RAP mixture exhibited a *low* fracture temperature while maintaining a high fracture stress indicating a good resistance to thermal cracking in cold climates.

Download 3D-Move for free @ https://www.unr.edu/wrsc

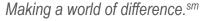


Making a world of difference.sm

Subgrade Layer

Simple Mechanical-Empirical (M-E) Analysis (Cont'd)

Slide No. 16


Making a world of difference.sm

Simple Mechanical-Empirical (M-E) Analysis (Cont'd)

Vahiala	Surface	Fatigue Analysis at 21°C			
Vehicle Speed	Surface Mixture	Number of repetitions to failure, <i>N</i> _f (million)	Fatigue life ratio		
72 kph (45 mph)	G5-100%RAP	23.2	8.0		
	DG-HMA	2.9			
16 kph (10 mph)	G5-100%RAP	17.6	14.7		
	DG-HMA	1.2			

• High resistance to fatigue cracking for G5[®]-stabilized RAP mixture when used as a surface layer.

Demonstration Project

- Reconstruction project: Al Wakar water station, Doha, Qatar.
 - ~60 m long by x 3 m wide stretch.
- Traffic: more than 1,000 water trucks per day, 7 days per week, each loaded with 4,000-5,000 gallons of water.
- Average high air temperature of over 38°C
 - Daily high air temperature often exceeds 43°C during summer.
- Annual rainfall ~75 mm.

Making a world of difference.sm

Demonstration Project (Cont'd)

- ~75 mm of G5[®]-stabilized 100%RAP mix on top of subbase.
 5% G5[®]
 - 2 lifts compacted with 5-ton roller (3 vibratory passes)
- Average in place air voids: 10% (top lift) & 14.5% (bottom lift).

Making a world of difference.sm

Conclusion

- The laboratory test results show that the G5[®]-stabilized mixture (100% RAP)
 - Is stable with a high stiffness.
 - Has high resistance to rutting at 60°C; hence, offering significantly more resistance to rutting at higher pavement temperatures.
 - has a high resistance to fatigue cracking at 21°C while maintaining a high flexural stiffness.
 - Has a cold fracture temperature of -34°C indicating that the mixture will perform well in designated cold environment.
- The ME analysis shows that G5[®]-stabilized mixture (100% RAP) significantly improved fatigue life of thin pavements.
- The demonstration project had no construction-related issues & a recent visual distress survey shows no distresses in the pavement after 6 months.

THANK YOU!

Making a world of difference.sm